технические условия

   Блог компании Технос-М+

Будущий ледокол «Виктор Черномырдин» получил автоматическую систему газового пожаротушения от «ТЕХНОС-М +»

ООО «Балтийский завод – Судостроение» — это судостроительное промышленное предприятие. В октябре 2011 года подписали контракт на строительство четырех ледоколов ЛК-25, ЛК-18 и двух ЛК-16. 40% контракта приходится на постройку ледокола ЛК-25. Позднее ледокол назвали в честь бывшего премьер-министра России Виктора Черномырдина.
Строительство судна ведется по проекту серии 22600. Длина составит 142,4 метра, ширина — 29 метров, водоизмещение 22 258 тонн, запас скорости — до 17 узлов. Вместимость судна на 38 человек, автономность — 60 суток.
07 февраля 2017, 13:54   technos-m 0    6861   0 0
   Блог компании ЗАО "ПО "Спецавтоматика"

Сравнительный анализ технических характеристик спринклерных оросителей

Конструкция спринклера совершенствовалась на протяжении более ста лет. За это время внешний вид спринклера претерпел значительные изменения. Новые идеи, прошедшие проверку временем, приживались и копировались конкурентами. Теперь все современные оросители общего назначения, производимые на различных предприятиях по всему миру, имеют примерно одинаковую конструкцию. На рисунке 1 представлен в разрезе типичный спринклерный ороситель.

Рисунок 1. Конструкция спринклерного оросителя.

Полый корпус оросителя (6) с одной стороны имеет резьбу для подключения к системе распределительных трубопроводов, с другой - оснащен розеткой (2), предназначенной для равномерного распределения воды по защищаемой площади. Розетка может иметь различную форму в зависимости от монтажного расположения оросителя и его коэффициента производительности. Коэффициент производительности, то есть способность оросителя пропустить через себя определенное количество воды, в свою очередь, зависит от величины выходного отверстия оросителя.

02 февраля 2017, 22:05   zao_po_specavtomatica 0    26660   0 0
   Нормативная документация

Cтандарт организации СТО 420541.004 «Автоматические установки водяного пожаротушения АУП-Гефест. Проектирование»

Cтандарт организации СТО 420541.004

Cтандарт организации СТО 420541.004 «Автоматические установки водяного пожаротушения АУП-Гефест. Проектирование».


Специалистами ГК «Гефест» совместно с ФГБУ ВНИИПО МЧС РФ разработан стандарт организации СТО 420541.004 «Автоматические установки водяного пожаротушения АУП-Гефест. Проектирование». В соответствии с инструкцией о порядке разработки органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления и организациями нормативных документов по пожарной безопасности, введения их в действие и применения, утвержденной приказом МЧС России от 16.03.2007 № 140, Стандарт организации согласован и зарегистрирован департаментом надзорной деятельности МЧС РФ в качестве нормативного документа по пожарной безопасности с присвоением обозначения (шифра) «ВНПБ 40-16».


Основной особенностью нового нормативного документа является то, что он содержит все необходимые требования по проектированию автоматических установок пожаротушения с принудительным пуском, а также автоматических установок пожаротушения тонкораспыленной водой.

03 июня 2016, 08:49   Екатерина 0    10614   0 0
   Энциклопедия

Шебеко Юрий Николаевич

Шебеко Юрий Николаевич (родился 11 апреля 1952 год, Москва), полковник внутренней службы, доктор технических наук, профессор.


Известный учёный в области теоретических основ оценки и снижения пожаровзрывоопасности технологических процессов.


Окончил Московский физико-технический институт (1975 г.) и аспирантуру при нём (1978 г.).


Во ВНИИПО работает с 1978 года. За время работы прошёл ступени от младшего научного сотрудника до заместителя начальника НИЦ ПП и ПЧСП — начальник отдела ФГУ ВНИИПО МЧС России (в настоящее время).


Область научных интересов: физика горения и взрыва; исследования горения газов и жидкостей, в т. ч. при повышенных температурах и давлениях; математическое моделирование крупных аварий с пожарами и взрывами на предприятиях нефтеперерабатывающей, нефтехимической и химической промышленности; обеспечение пожаровзрывобезопасности реакторных установок атомных электростанций. Им разработан комплекс методов расчёта предельных условий горения и показателей пожарной опасности газов и жидкостей; созданы и реализованы компьютерные модели протекания крупных аварий с пожарами и взрывами, уникальные экспериментальные установки для определения характеристик горения газов и паров при давлениях от 4,0 МПа и температуре до 250 °С; разработан ряд нормативных документов по пожарной безопасности.


Шебеко Ю.Н. опубликовано свыше 150 научных трудов. Под его руководством защищены 8 кандидатских и 2 докторские диссертации.


Шебеко Ю.Н. является членом Национальной академии наук пожарной безопасности (НАНПБ), учёного совета ФГУ ВНИИПО.


Награждён знаками «Лучшему работнику пожарной охраны», «Отличник МВД», «За заслуги», 5 медалями, в.т.ч. медалью ордена «За заслуги перед Отечеством» II степени.

23 января 2016, 13:06   Екатерина 0    3229   0 0
   Энциклопедия

Цариченко Сергей Георгиевич

Цариченко Сергей Георгиевич (родился 5 мая 1957 году, г. Курск), полковник внутренней службы, доктор технических наук.


Известный учёный в области обеспечения пожаровзрывобезопасности технологических процессов, средств и способов пожаротушения.


Окончил Московское высшее техническое училище (МВТУ) им. Н.Э. Баумана (1980 г.).


С 1980 года работает во ВНИИПО МВД СССР, за время работы прошёл ступени от старшего лаборанта до заместителя начальника института, начальника научно-исследовательского центра новых технологий пожаротушения, аварийно-спасательных работ и робототехники.


Научная деятельность была связана с изучением предельных условий и газодинамики интенсификации процессов горения аэродисперсных твёрдых материалов и газовых смесей в условиях протекания различных технологических процессов при повышенных давлениях и температурах. Результаты этих исследований нашли внедрение в обеспечении пожаровзрывобезопасности технологических процессов получения дисперсных органических материалов и решении проблемы водородной взрывобезопасности ядерных энергетических установок различного типа.


Принимал активное участие в организации сертификационных испытаний пожарной техники и вооружения. Разрабатывал современные средства пожаротушения автоматического и оперативного применения, в том числе с использованием тонкораспылённой воды и водопенных составов различного назначения. Начиная с 2005 года, руководит работами по созданию современных автоматических роботизированных комплексов для выполнения аварийно-спасательных работ и пожаротушения различного класса и назначения, а также отработкой новых технологий с использованием авиационных средств.


Цариченко С.Г. опубликовано свыше 140 научных трудов, 3 учебных пособия, получено 6 патентов и авторских свидетельств на изобретения. Является членом учёных советов Академии ГПС МЧС России и ФГУ ВНИИПО МЧС России.


Награждён знаками «Почётный работник пожарной охраны», «За заслуги», «Почётный знак МЧС России», 3 медалями, в т. ч. ВВЦ России.


Ряд работ в составе с коллективом соавторов был удостоен медалями и дипломами зарубежных выставок в Брюсселе (Бельгия), Сеуле (Южная Корея).

22 января 2016, 10:28   Екатерина 0    3695   0 0
   Энциклопедия

Худяков Георгий Никитович

Худяков Георгий Никитович (1910—1993 гг.), кандидат технических наук.


Один из первых исследователей, заинтересовавшихся проблемами горения жидкостей со свободной поверхности в условиях пожаров.


Долгие годы проработал старшим научным сотрудником Энергетического института им. Г.М. Кржижановского.


Известен ряд его научных работ, в которых он излагал результаты своих лабораторных опытов по определению поля температуры на поверхности и в толще горящей жидкости со свободной поверхности. Им рассматривались также физические основы возможных методов и средств прекращения горения, т.е. тушения пожаров горючих жидкостей в резервуарах.


В качестве консультанта Худяков Г.Н. приглашался на крупные огневые испытания по тушению пожаров нефти и нефтепродуктов в резервуарах, которые проводились ЦНИИПО МВД СССР в 1949 году и 1954 году.


В конце 1954 года Худяков Г.Н. вошёл в группу научных сотрудников, созданную решением Президиума АН СССР и МВД СССР в качестве одного из ответственных исполнителей. Эта группа под научным руководством Блинова В.И. в течение 1955—1957 год провел на полигоне ЦНИИПО комплексные исследования процессов горения нефти и нефтепродуктов в резервуарах, а также механизма огнетушащего действия ряда средств и методов тушения пожаров.


В ходе этих исследований определялись скорости выгорания ряда нефтепродуктов в зависимости от условий горения в резервуарах, распределение температуры на поверхности горящей жидкости и в её толще. Было установлено, что нефть и мазут при длительном горении образуют на поверхности «гомотермический слой» (слой с одинаковой температурой), толщина которого возрастает со временем. Этот «гомотермический слой» и является причиной грозных явлений вскипания и выбросов горящей нефти из резервуара при длительном горении в резервуарах.


Эти результаты в дальнейшем использовались при разработке «Рекомендаций по тушению пожаров нефти и нефтепродуктов в резервуарах».

21 января 2016, 15:13   Екатерина 0    2309   0 0
   Энциклопедия

Хасанов Ирек Равильевич

Хасанов Ирек Равильевич (родился 21 сентября 1955 году, п. Карабаш, Бугульминский р-н, Татарская АССР),
полковник внутренней службы, доктор технических наук (2002 г.).


Известный учёный в области моделирования процессов развития крупных пожаров и обоснования норм и руководств по оценке систем обеспечения пожарной безопасности зданий и сооружений.


Окончил Горьковский государственный универститет им. Н.И. Лобачевского (1977 г.). В ФГУ ВНИИПО МЧС России работает с 1985 года. За время работы прошел ступени от младшего научного сотрудника до заместителя начальника института — начальник Ситуационного центра.


Область научных интересов: разработка и совершенствование методов моделирования и прогнозирования пожарной обстановки, особенностей распространения опасных факторов пожаров, возникающих в результате аварий, взрывов, катастроф и стихийных бедствий; информационная и расчётно-аналитическая поддержка управленческих решений при ликвидации пожаров и техногенных ЧС.


Совместно с сотрудниками ВНИИПО создал научно-методические основы прогнозирования пожарной обстановки в очагах поражения; разработал комплекс математических моделей и программных средств исследования процессов аэродинамики и тепломассопереноса при крупных пожарах; создал методологию оценки параметров загрязнения атмосферы продуктами горения при массовых пожарах; разработал методики определения режимов работы, потерь личного состава пожарных и спасательных подразделений в очагах поражения и рекомендации по действиям при тушении пожаров в условиях радиоактивного и химического заражения; принимал участие в обосновании и разработке норм обеспечения пожарной безопасности высотных многофункциональных комплексов.


Под руководством Хасанова И.Р. и при его участии разработаны концепции, мероприятия и технические решения обеспечения пожарной безопасности ряда уникальных и высотных объектов (административно-общественный центр Московской области, тоннельные сооружения различных участков 3-го транспортного кольца Москвы, Останкинская телевизионная башня Москвы и др.).


Результаты работ, выполненных при непосредственном участии Хасанова И.Р., были использованы при разработке 26 нормативных и методических документов для МЧС России и других ведомств. Автор более 100 научных работ.


Хасанов И.Р. является членом Межведомственного координационного научного совета по проблемам гражданской обороны и чрезвычайных ситуаций, членом экспертного совета УГПН МЧС России, членом НТС ФГУ ВНИИПО МЧС России, членом ПТС ФГУ ВНИИГО ЧС (ФЦ), академии НАНПБ.


Награждён знаками «Лучшему работнику пожарной охраны, «За отличную службу в МВД», «За заслуги» МЧС России, 4 медалями в т. ч., медалью к ордену «За заслуги перед Отечеством» II степени.

21 января 2016, 13:59   Екатерина 0    2972   0 0
   Энциклопедия

Фетисов Петр Афиногенович

Фетисов Петр Афиногенович (родился в 1906 году), инженер подполковник внутренней службы, кандидат технических наук (1960 г.), специалист в области создания и условий применения искробезопасного электрооборудования во взрывоопасных средах.


После окончания Московского электромеханического института инженеров транспорта (1935 г.) работал на различны должностях в электродепо Москва-З и Северной железной дороги.


С 1946 года работал во ВIII2IКП0, где прошёл должностные ступени от инженера до начальника лаборатории. Принимал участие в разработке общесоюзных Правил изготовления взрывозащитного электрооборудования (ПИВЭ), ряда государственных стандартов на безопасное электрооборудование. В 1971 году уволился в отставку.


Фетисов П.А. автор более 60 научных работ, в т. ч. З книги (в соавторстве).


Награждён знаком «Лучшему работнику пожарной охраны», 4 медалями.

20 января 2016, 14:11   Екатерина 0    1504   0 0
   Энциклопедия

Установка газового пожаротушения

Установка газового пожаротушения — стационарное устройство для тушения пожара газового ОТВ. В зависимости от применяемого газового ОТВ различают установки азотного, хладонового, СО 2 пожаротушения. В состав установки газового пожаротушения входят сосуды для хранения газового ОТВ, трубопроводы и насадки. АУГП содержат также технические средства автоматической пожарной сигнализации. Заряды установки газового пожаротушения практически не причиняют ущерб защищаемому объекту. Поэтому установки газового пожаротушения применяют для защиты вычислительных центров и телефонных узлов, библиотек, архивов, музеев, банков, ряда складов в закрытых помещениях, а также камер окраски, пропитки, сушки и другие. Установка газового пожаротушения предпочтительна для тушения ГЖ и твердых материалов, горение которых достаточно долго не переходит в тление. Установка газового пожаротушения может также успешно применяться для тушения пожара газов, если в условиях тушения не образуется взрывопожароопасная газовая атмосфера. По степени автоматизации установки газового пожаротушения подразделяют на автоматические, автоматизированные (т. е. установка пожаротушения, автоматически обнаруживающая загорание, выдающая извещение о нём и приводящаяся в действие вручную) и ручные (только с ручным способом приведения в действие).


Лит.: НПБ 88-2001*. Установки пожаротушения и сигнализации. Нормы и правила проектирования; ГОСТ 12.2.047-86. ССБТ. Пожарная техника. Термины и определения.

18 января 2016, 13:50   Екатерина 0    2052   0 0
   Энциклопедия

Установка аэрозольного пожаротушения

Установка аэрозольного пожаротушения — установка для тушения пожара, в которой в качестве ОТВ используется аэрозоль, получаемый при сгорании АОС. Установки аэрозольного пожаротушения предназначены для объёмного тушения пожаров подкласса А2 и класса В в помещениях объёмом до 10000 м 3, высотой не более 10 м и параметром негерметичности помещений не более 0,0022 м -1 Они применяются также для защиты кабельных сооружений (полуэтажи, коллекторы, шах; О-89 ты и т.п.) объёмом до 3000 м3 и высотой не более 10 м. при значениях параметра негерметичности помещения не более 0,001 м -1. По огнетушащей способности, компактности, материалоёмкости, условиям эксплуатации, стоимости и т.д. Установка аэрозольного пожаротушения значительно экономичнее всех известных установок объёмного пожаротушения. Установку аэрозольного пожаротушения не применяют на объектах: а) на которых находятся люди, не имеющие возможности покинуть эти объекты до начала работы ГОА; б) с пребыванием большого количества людей (50 человек и более); в) в зданиях III и ниже степени огнестойкости с использованием ГОА, имеющих на расстоянии 150 мм от своей внешней поверхности температурную зону более 400 °С. действующими нормативами установки аэрозольного пожаротушения не рекомендуются для тушения: волокнистых, сыпучих, пористых и других материалов; веществ, склонных к самовозгоранию и (или) тлению (древесные опилки, хлопок, травяная мука и др.); полимерных материалов, склонных к тлению и горению без доступа воздуха; гидридов металлов и пирофорных веществ; порошков металлов (магний, титан, цирконий и др.). Установки аэрозольного пожаротушения классифицируются: по принципу функционирования, способу пуска, быстродействию и инерционности срабатывания. По принципу функционирования установки аэрозольного пожаротушения подразделяют: на автоматические, т. е. установки пожаротушени, автоматически срабатывающие при превышении контролируемыми факторами пожара установленных пороговых значений в защищаемой зоне; автоматизированные, т. е. установки пожаротушения, автоматически обнаруживающие загорание, выдающие извещение о нём и приводящиеся в действие вручную; автономные, т. е. установки пожаротушения с автономным пуском, не требующие внешних источников энергоснабжения, не содержащие приборов контроля и управления и не связанные с установкой пожарной сигнализации. Установки по способу пуска подразделяют на установки аэрозольного пожаротушения: с электрическим, тепловым от пиротехнических элементов, механическим, комбинированным пуском. По быстродействию установки пожаротушения подразделяют на установки аэрозольного пожаротушения: быстрого действия (время подачи огнетушащего аэрозоля до 1 с); кратковременного действия (время подачи аэрозоля 1—600 с); средней продолжительности действия (время подачи аэрозоля 10—30 мин); длительного действия (время подачи аэрозоля более 30 мин). Автоматические установки аэрозольного пожаротушения по инерционности срабатывания подразделяются: на малоинерционные (инерционность не более З с); средне-инерционные (инерционность 3—180 с); повышенной инерционности (инерционность более 180 с). Автоматические установки аэрозольного пожаротушения с электрическим пуском включают в себя: ПИ или иные устройства обнаружения пожара; приборы и устройства контроля и управления; устройства, обеспечивающие электропитанием УАП и её элементы; шлейфы пожарной сигнализации, а также электрические цепи питания, управления и контроля; ГОА; устройства, формирующие и выдающие сигналы на отключение систем вентиляции, кондиционирования, воздушного отопления и технологического оборудования в защищаемом помещении, на закрытие противопожарных клапанов, заслонок вентиляции и т. п.; устройства оповещения о пуске установок аэрозольного пожаротушения; устройства сигнализации о положении дверей в защищаемом помещении; устройства звуковой и световой сигнализации, оповещения о работе установки аэрозольного пожаротушения и наличии в помещении огнетушащего аэрозоля. Расчёт основных параметров всех типов установок включает в себя: определение общей массы заряда АОС, обеспечивающей тушение пожара объёмным способом; выбор типа и определение необходимого количества ГОА; определение алгоритма пуска ГОА; выявление уточненных параметров установок; определение запаса ГОА; поверочный расчёт давления и (или) температуры в защищаемом объёме при подаче огнетушащего аэрозоля. При проектировании автоматических и автономных установок дополнительно определяются типы и необходимое количество ПИ, а также приборов и другого оборудования для контроля и управления элементами установок.


Лит,: НПБ 88-2001*. Установки пожаротушения и сигнализации. Нормы и правила проектирования; Агафонов В.В., Копылов Н.П. Установки аэрозольного пожаротушения. Элементы, характеристики, проектирование, монтаж и эксплуатация. М., 1999; Агафонов В.В., Копылов Н.П. Вопросы проектирования, монтажа и эксплуатации установок аэрозольного пожаротушения: Методическое пособие. М., 2001; ГОСТ Р 51046-97. Гёнераторы огнетушащего аэрозоля. Типы и параметры; НПБ 60-97 Генераторы огнетушащего аэрозоля. Общие технические требования. Методы испытаний.

18 января 2016, 13:35   Екатерина 0    2591   0 0